Differential-geometric characterizations of complete intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential-geometric Characterizations of Complete Intersections

We characterize complete intersections in terms of local differential geometry. Let X ⊂ CPn+a be a variety. We first localize the problem; we give a criterion for X to be a complete intersection that is testable at any smooth point of X. We rephrase the criterion in the language of projective differential geometry and derive a sufficient condition for X to be a complete intersection that is com...

متن کامل

Homological characterizations of quasi-complete intersections

Let R be a commutative ring, (f) an ideal of R, and E = K(f ;R) the Koszul complex. We investigate the structure of the Tate construction T associated with E. In particular, we study the relationship between the homology of T , the quasi-complete intersection property of ideals, and the complete intersection property of (local) rings.

متن کامل

Criteria for complete intersections

We establish two criteria for certain local algebras to be complete intersections. These criteria play an important role in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular. Introduction In this paper we discuss two results in commutative algebra that are used in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular [11]. We first fix some notation tha...

متن کامل

Characterizations of Weibull Geometric Distribution

Various characterizations of the Weibull Geometric distribution are presented. These characterizations are based, on a simple relationship between two truncated moments ; on hazard function ; and on functions of order statistics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1996

ISSN: 0022-040X

DOI: 10.4310/jdg/1214458739